“THE CATLIN MARK”
نویسندگان
چکیده
منابع مشابه
Paul Catlin 1948-1995
On April 20, 1995, Paul Allen Catlin passed away in Detroit, Michigan, at the age of 46, and the community of Graph Theory lost one of its best friends. Paul Catlin was born on June 25, 1948 in Bridgeport, Connecticut. His life-long love for mathematics was visible from the start. His younger brother, David Catlin, remembers Paul riding around on his tricycle counting for the sheer pleasure of ...
متن کاملThe Catlin Multitype and Biholomorphic Equivalence of Models
We consider an alternative approach to a fundamental CR invariant – the Catlin multitype. It is applied to a general smooth hypersurface in C, not necessarily pseudoconvex. Using this approach, we prove biholomorphic equivalence of models, and give an explicit description of biholomorphisms between different models. A constructive finite algorithm for computing the multitype is described. The r...
متن کاملفرایند دریافت E- Mark
با گسترش روزافزون صنعت حملونقل درجهان و ارتقای استانداردها، تدوین و اجرای استانداردهای بینالمللی، یک امر ضروری بهنظر میرسد. E- Mark یک مجموعه قانونهای هماهنگ بینالمللی برای خودرو و قطعههای آن است که تمامی تولیدکنندگان وسیلههای نقیله و قطعهها ملزم به رعایت آن هستند. تولیدکنندگان تایر نیز از این امر مستثنی نیستند و باید برای تایرهای خود این مجوز را دریافت کنند. در این مقاله روش دریافت E...
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملOn a graph packing conjecture by Bollobás, Eldridge and Catlin
Two graphs G1 and G2 of order n pack if there exist injective mappings of their vertex sets into [n], such that the images of the edge sets are disjoint. In 1978, Bollobás and Eldridge, and independently Catlin, conjectured that if (∆(G1)+1)(∆(G2)+1)≤ n+1, then G1 and G2 pack. Towards this conjecture, we show that for ∆(G1),∆(G2)≥ 300, if (∆(G1)+1)(∆(G2)+1)≤0.6n+1, then G1 and G2 pack. This is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Heredity
سال: 1922
ISSN: 1465-7333,0022-1503
DOI: 10.1093/oxfordjournals.jhered.a102158